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ABSTRACT. We consider solutions to elliptic linear equation (1) of second order in an
unbounded domain @ in R™ supposing that @ is contained in the cone

K={z=(z',za) :|2'| < Az, + B, 0 < z, < o0},

and contains the cylinder

C=E=z,5) 12| €1, 0<s £x)
We study the asymptotic behavior as £, — oo of the solutions of (1) satisfying nonlinear
boundary condition (2). In dependence on the structure of @, we obtain more precise
results. In general we assumne that @ is contained in the domain

{z=(z',24) :|2'] < 7(za), 0< 2, < o0},

where 1 < v(t) < At+ B. We show that any solution of the problem growing moderately
as Tn — 00, is bounded and tending to 0 as z, — oo. In our notes [2] ,[3] we showed
such a theorem for the case y(z,) = B, i.e. for a cylindrical domain @ = Q2x(0,00), Q C
R L

1. Introduction. We study the solutions to the elliptic second order linear equation

Iui= 3 gr(os(a) o) — ela)u =0 1)

ij=1
in an unbounded domain Q in R"™ supposing that Q is contained in the cone
K={z=(z,2,) :|z| < Az, + B, 0<z, <},
and contains the cylinder
C={c=(z,z,) :|2'| <1, 0< 2z, < oo}.

In dependence on the structure of ), we obtain more precise results. In general we assume
that @ is contained in the domain ;

{z =(2,z.) : |2'| <7(2zn), 0< 2, < 0},
where 1 < 7(t) < At + B, and that u satisfies the b.oundary condition
o+ be)lu(z)ulz) 2 0, u(a) e < 0 @
on the lateral surface _
S={z€dQ, 0<z, < oo},
where p > 0, b(z) > % >0, 7€ C*(0,00) and

o ou .
-BW — ;10”(3) a—% CQS 9,',

6; is the angle between the axis z; and the outer normal vector.
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Suppose that

n

z ai;(2)€:€; > colé? o >0, z € Q,

1,7=1

and that 0 < ¢(z), |aij(z)] < C for ¢,j =1,..,n and for all z € Q. We don’t assume
that a;;(z), ¢(z) are continuous.

Let us denote r and X7 the sections of the domain @) and the boundary S by the
plane z, = T, and Q7 and St the parts of @ and S between the planes z, =1 and
Po= T.

We consider weak solutions u satisfying (1) and (2). It means that v € H}_(Q)N
Lpt110c(S) and

/ Z a;;(z g—ug-gi + c(z)uyp|dz = 0,
[} X loslo) 5 G + claute ol < 0

ou
/ 3 fas (2) 5 g+ cehulelplallds + [ Holu(e)P u(alp(z)ds 20 ()

IJ""

for all functions ¥ € Hj(Q), and positive functions p(z) € H'(Q) vanishing at z, = 0
and in a neighborhood of z, = co.

We will show that any solution of our problem growing moderately at infinity is bounded
and tending to 0 as z, — co. In our notes [2] ,[3] we showed such a theorem for the case
7(z,) = B, i.e. for a cylindrical domain @ = Q x (0,00), © C R™L

2. Auxiliary results.

LEMMA 1. (Maximum principle). Let D be a bounded subdomain in @, u be a function
from H'(Q), satisfying the inequality Lu > 0 in D weakly, i.e.

' > e +cleuplde <0

t
Cj"'

for all positive functions ¢ from H}(D). Ifu > 0 on the boundary of D, then u > 0 in D.
Proof. Let ¢ = min(u(z),0). Then ¢ € H&(D) and

f 13 ase) 2222 + e(e)uplda <0
t,:,t-l ;
-Therefore, grad ¢(z) =0 in D and thus p(z) =0in D,i.e. u>0. A
LEMMA 2. Let Kg be a ball of radius R and Lu = 0 in K. Then

sup |u(z) f (z)|*dz
R/2
and the constant C does not depend on R.

Proof. See [1], Theorem 5.1, p. 217 for the case ‘R=1. In the general case we use the
homothety = = Ry. O
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LEM.MA. 3. Let Kp be a ball of radius R with its center at the point 0 and Kg be its
part situated in the domain z; > 0, let Lu = 0 in K¥ and uw 8u/ON < 0 asz; = 0. Then

sup u(e)f* < / ju(e) P de
KR!‘!

and the constant G’ does not depend on R.

Proof. The proof follows the same scheme as that of Theorem 5. 1in (1], pp. 217-223.
This proof uses as its base the following inequality (5.10) from this work :

fazvf.dx < K/(a2 + o2)vidz, a € C3(§2),
0 Q '

which holds in @ == K3 because of the boundary conditions v du/8N < 0 and can be
proved by substitution of the function ¢ = o?u in the definition (3) of weak solutions. [

LEMMA 4. Let Lu = 0in Q, v 8u/ON < 0on 5. If0 < p < 1, we assume that ju| < M.
If .

] Vulla? e + j [uP*22dS < oo,
Q g

then u(z) — 0 as z, ~» oo uniformly in Q.

Proof. Let 2 € T, z¢p, = T, R = min({y{T),T/2) and K be a ball centered at z4 of
radius R. Let Ky = KN Q, 5 = KNS and K; be a ball of radius RB/2, concentric with
K.

If p < 1, then Ju? < MY ?lyu[P*! and therefore,

j luf2z?="dS < C.
5
Hp>1, then

2w’ < zpfuff* 4 Y
and therefore, '

f ful2l"dS < f [ufPted-"dS + f g, mH-e-1gs < C.
By the Sobolev isnet;{uaiity T ”
| f luftzomde < Gyl f Vultetds + [S 'zl dS) < Cs.
It is clear that f:;any £ > 0 there efcisz; a N such that

[ ufiazmde <,
K

if T > N, and therefore,
| f luftdz < Cse.

If §; = @, then our statement follows from Lemma 2 aad if 5; # 0, t:hen it can be
obtained from Lemma 3 using a partition of the unity. [}

. 3, Conical domains. Consider firstly conical domains corresponding to the functxon
¥(zn) = Az, + B,

THEOREM 1. Let 4{z,) = Az, + B, p> 1. T}zere exist constants a9, Ap > 0 such
that a function u, satisfying (1} and (2) and the inequality |u(z)| < bz2 in the domain
Q= {z e R" |z'| <¥(za), 0< 2z, <0}, with some constantsb>0, 0<a<ag 0<
A < Ay tends to 0 as z, — oo uniformly in Q.
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Proof. Let h(z,) be a smooth function such that h(zﬂ) =lasl <z, <T, h{z,) = 0for
Zy > 3T/2 and for z, < 1/2. We can assume that |A'(z,)| < C/T and |h”(zn)i <o/

‘as 2, > T. Set

sn = [ > o (5) 5o e + e h(an)e e

+ [ Menb@u(@PHaimas.
s
Substituting in (3) the function ¢{z) = h{z,.)zi "u(z), we obtain that

Bu Hz2"h{z,))
JT) < - /}:a,; (o)

t JJusk

<Ci+ CgJ(T)”z([ 2] ™ u(z)?dz)!/2.

Qarya

Therefore, if lu({z)| < ba2?, then J(T') < C3T%.

Set now
Hu Ou 9em +1,.2-n
] [Z aw{:r: e + cleyu?lzi"de + [ b(z)|ulz)FHz2"dS.
Q7 ;j=1 Sr -

K ju(z)| < bz2, then I{T) < J(T) < C4T?°. Substituting in (3) the function ¢(z) =
u(z)z2""h(2,), where h.(z,) is a smooth function, equal to 1 as 2, < T — ¢ and 0 for
zn > T, and passing to the imit as £ — 0, we obtain that

(T) <(n— 2)] Zam ummi”“dz + / Za,,,{z uzi"dz’ + ¢,
Qr iml

r =
where
¢ = — Z am(z)wudz’
M j=y
We have |
{n—2) / Z am(z)umz‘ “dz < Cs( / 2z da) 3 ;vuﬁmgndz)m;'
9r =1 - QT

| wepeinas < i [ Vale)fside + [ aleyies)
<Coldy [ Vale)feimds + [ (Alule) 4 45405 )alas)
< CeA3I(T) + Cr T“”*’(P“”

| u(z)? < Aoa;”]u(z)}ﬁ'i o+ A;*f(rl) ,~3/(p~1)’
as ¢ > 0. Using the Sobolev inequality we obtain

j‘; ) u(z)’zy"ds’ < ColAGT? f |Vu(z)[?zi"de’ + T f u(a:)z 2-n 43

‘since

< ColAT? / IVu(z)fe?"de + T f (T;u(z)f?’f1+r*=f€*~1>)z§-ﬂm,
1y Yr . .



since ' _
u(2)? € Tlu(z)[P* + T~

as T > 0. If Agis so small that CoA2 < 1/2, then
/ u(2)2al " dz' < Cro[T2(T) + T-3/ -1,
Gr

and therefore

/ Z am(x) e, wed"dz’ < CuTI(T) + Cis.

T 4=}
Thus
HT) < CuTI(T) + Cha.
Integrating this inequality we see that either I{T') < Cis, 0or I{T} =2 Cis + CraTHn,
Since the latter is impossible when 2aCy; < 1, we obtain that I{T") < Chg, ie.

/ Vul?dz + / fuftide < 0.
¢ s

Now our statement follows from Lemma 4. O

EXAMPLE 1. If Q@ = {(21,22) 1 0 < z; < 23 < oo} and u{z; 23} = r* cos 4p+r'° sin 16,
where r, ¢ are polar coordinates, then we iiave an example of a harmonic function of power
growth in a cone, It is easy to see that Sk +16ulul =0 ¢ = 0 or ¢ = 7/4, so that (2)
holds with p = 4.

4. Cylindrical domains, p > 1. Let now @ = X ({, 00}, where 0 is a domain in
R™! je. @ is a cylinder in R™.

THEOREM 2. Let p > 1. Suppose that the coefficients ¢{z), ag{z) for¢,j=1,...,n—1"
-do not depend on z,. Let A* be the first eigenvalue of the Dirichlet problem in §, i.e.

o752 i5(2)0u(z)/Bz;0w(2) [Bz: + c(z)w(z)’]de

A% =
wexc'y () Jo w(z)dz

Let v > 0,7 > 0 be such constants that

n n n—1 n
B ani(@)E? < Y ai(@)eilss B Y a2}l < Y el
F=1 g} sl idm}
for all {; € R. Set p = 7,7,. For any ¢ €0, ;] there exists a positive constant a such that
if Ju(z)| < ae?P 3=/ then u(z) — 0 as z,, — oo uniformly in Q.
Proof. Let Qr = 2 x [0,T], Sy =T x[0,7). Set

IT)= / {): ai;{z )3“(”)‘9“?)4-4@1‘ Jdz + | ) b(z)lu(m)l".‘“‘d&

Let he C“(R),h(%) = 0 for za > T + 1, h(zﬂ)mlfor0<zﬂ< T.
Putting in (3) the function ¢(z) = h(z,.)u(a:), we obtam that

(z) 31&(:0) . 1
[ 4 s +efe)ullde + /3 Az )b(e) u(z) PHds

13“1

< h’(zn)u(z)Za,.,(z s - [ ue _G)Zaw( )""“"" e

J=1
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We have
| / h’(zn)u(:c)zan,( Rt d < cn) u?(a)da

Qr41\Q1
If |u(z)| < ae®™, then

/ - Ou(z 2 2 .
|/;h (zn)u(z) ; anj(Z) B:cj)(h:l < CI_I(T)E bT

and therefore,

T < Gz,
Putting in (3) the function ¢(z) = u(z)he(z,) where he(z,) is a smooth function, equal
tolas 2, <T —eand 0 for z, > T, and passing to the limit as € — 0, we obtam that

3“ :1,)31&(1) 2 lw(z) P
02 [ 13wt G+ ctapias + [ suiapas

T ij=1
3 ou(z"\T) , , : = ou(z',0) , ,
R g X sl il
-I-]S;u(z,T);a,U(a) oz, dz /nu[:z,,(});a i) oz, z
Let
e s LI 21 @ij(z)0w(z)/Oz;0w(z) /O + c(z)w?ldz’ + 7 [ w?dS

weC=(Q) Jow(z)?de

Since A\, = X as 7 — 0o, we can choose 7 so large that A, > A — ¢/3. Let C3 be a
constant, depending on 7 such that for every real p and z € Q

p < E’—(,,;“"ﬂi,ul*’“ +Cs.
By the definition of the number A, we have

w}(z)dz’ < —— [Z aii( _3“‘3’)+c(x)u2]dx'+f u?dS)
Q (A—¢/3)? 6/3 a:c, Oz;

r
6/3 (/[Z ai5( z) Bui:c) + c(z)u’]dz’

]

/ b(z)|u(z)[P*dS + Car).

On the other hand,
du(z, T) g

|fu(:c'r_ (o) |

< ([ ute 7 [ 13 amte )a"("’ Dy

i=1

< (1fn)( [ u(e' Ty PL(TY
Q
Using the obtained estimates we see that '
: 1 2
I(T)<c+ mf (_T)s
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where
— ~ o Ou(',0)
o= |/ﬂu(:c,0) ;:l anj(z) P dz'| + C4

and the constant Cy depends on 7,¢, but does not depend on 7.
The function I(T') is increasing. If I(T}) > c for some Ty > 0, then for T > T}

I'(T)
A=2/3) < —"—.
7(A —2¢/3) < IT)—e
It follows that I(T) > ¢+ Cse?*~2¢/3T. But if |u(z)| < ae’® and b = p(A — £/2), then
I(T) < C2¢™7, as we have shown before. Since this is impossible for large T', we see that

HT) s € 1.6
/ Vul?dz + / [Pz < oo,
Q S

Now we may apply Lemma 4. and the proof is complete. a
Remark 1. If the coefficients a;;(z) are depending on z,,, then the Theorem is true in
the following sense : " There exist constants a, b such that if a solution to the problem (1),
(2) satisfies the inequality
[u(z)] < ae™,
then u(z) — 0 as z, — 00.”

EXAMPLE 2. The following example shows that our hypothese on the growth of so-
lutions is essential. Let n = 2 and Q = {(z1,22) : =27 < z; < 27,0 < z, < i ks

u(zy, z2) = €** sin 2, — e™/4sin(z,/4). It is easy to see that the function u is harmonic in
Q and Ou/0v + u|ul]® = 0 for z; = £27, so that (2) holds with p = 4.

5. Other domains, p > 1. Let now [2'| < v(2,),0 < z, < 00,z = (2, 2,) € Q. Let
t
ds
Py = [ 5
@) 0o 7(s) -
Suppose that v (s) = o(s) as s — o0, ¥(s) = o0 as s — o0, and ¥(T + s) < Cy(T) if
0 < s < Cyy(T). Note that F(t) = oo as t = o0. '
THEOREM 3. If u is a solution of equation (1) in Q, satisfying (2), and
)| < besrlon)
in Q with a small enough constant a, then u(z) — 0 as z, — oo uniformly in Q.

Proof. Let h(z,) be a smooth function such that h(z,) =1for 1 < z, < T, h(z,) =0
for z, > 3T /2. We may assume that |k'(z,)| < C/T and |h"(z,)| < C/T? if z, > T. Put

J(T) = [Q > mj<z)§:;§—;h(zn>za-~ + ofwpolde

o /s B(zn)b(e)u(z)P*iz%"ds.

Putting in (3) the function p(z) = h(z,)z2 "u(z), we obtain that

I < [ 3 agte) g2 o)

i,7=1

< G+ CJ (T f 27 u(z)?dz)"/?.
Q
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Therefore, if [u(z)] < be"(®), then J(T) < Cye?*" (D),
Let now :

1) = [ 13 asle) g o+ eleh?lsi e+ [ baute)pisinas,
T 43wl : T

If |u{z)| < be2F@n), then I(T) < J(T) < Cee®FT). Putting in (3) the function ¢(z) =
w(z)z2 "he(zys), where h.(z,) is a smooth function, equal to 1 as ¢, < T — ¢ and 0 for
z, > T, and passing to the limit as ¢ -» 0, we obtain that

Iy < - / Z aij x)u du 3;% dz -i-f Zam(a:)wuzz““dz + e,

TtJ“ T;z

¢y = - / uzl "dz'.
Q

i 1*'*1

where

By the Sobolev inequality,

[ u(z)’2l"dz’ < Cspy(T) f Vule)P2™"de’ +4(T) [ u(z) 2l "dS]
N -

< Csfy(T)* A |Vu(z)’2i"de’ + ’r(T)fE 22 (y(T)u(z) [ + +(T)"77)dS),
i.e.

| ./ @)z "dz’ < Coly(T)I(T) ++(T)5¥),
2y
and therefore, '
/ S anle) ot nda’ < Cer(T)I(T) +
2y fa) .

On the other hand, using translatwn Tn = 2o, + T, we can suppose that y(z,) < ez, for
Zy, = 0. Using the inequality

p-{»l 2-n 1-n-2f/(p—1
wlgl ™ L uPtigdTn g gl el

we see that

A f Za-:(w)uwaamdzn<ca.r(T)”*( [ w(e)a=mda)

Qr =1 i
< CrI(T)V¥( / Vule)Pr(za) 2mdz + [ w()y(za)zo"dS]?
: Qr Sy

e <OITP([ [Vule)feinde+ [ u(a)aimds)
' Qr Sr

! : _ 1/2
< eCipI(T)? ( | 1vu@Pade+ [ wleptiainas + T—w—u)
o Qr Sy .

<eCis(I(T)+1).
If £ is so small that Cipe < 1/ 2, it follows the ;neqnaiity
I(T) <ec+t Ciey(TH(T).
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Integrating this inequality we see that either I(T') < c., or I(T) > ¢+ Cy5eFT)Y/C14, Since
the latter is impossible when 2aCy4 < 1, we obtain that I(T) < ¢, i.e.

f|Vu|2dm+/|u|Hldz< 0.
Q S

Applying Lemma 4, we can complete the proof. O

6. Case 0 < p < 1. Let us consider now the case 0 < p < 1.

THEOREM 4. Let 0 <p<1land0<a<.1/(1-p). Lety(z,) < Az, + B and A < Ay
with small enough Ao. If lu(z)| < bz with some b, then u(z) — 0 as z,, = oo uniformly
in Q.

Proof. 1. Let h(z,) be a smooth function such that h(z,) = 1for 1 < z, < 2T, h(z,)
0 for z, < 1/2 and for z, > 5T/2. We can assume that |h'(z,)| < C/T and |h”(:1,n)|
€T itz 2T Pt

= > asle) o S hlenst e + [ hanbla)ue) 2,

tJl

<

Putting in (3) the function p(z) = h(z,)z2 "u(z), we obtain that

J(T) = [ > ais(o) o QM) ) 4 ot

‘I\J_ J

< Gy + G (T) f 2| u(z)?dz) /2.
Q

Therefore, if |u(z)| < bz2, then J(T) < C3T?e.
2. Put

AT L D Hf—“?i +e(e)ulldz + [ b(z)lu(e)PHalmds.

St

If Ju(z)] < bz, then I(T) < J(T) < C4T?. Putting in (3) the function ¢(z) =
u(z)z2"h.(z,), where h.(z,) is a smooth function, equal to 1 as 'z, < T — ¢ and to
0 for z, > T, and passing to the limit as € — 0, we obtain that

2-n
IT) < -—/ a,_,(m)gu 32:,: da:+/ Zam(:c)——uz:2 *dz’ + ¢,

Tsy— Qr =

where

2—ﬂ
n dz'
/I; P2 a; (z) 3 .

By the Sobolev inéqua]ity :
f u(z)?z2"dz' < Cs[T? / |Vu(z)|?z2"dz' + T / u(z)?z2"dS)
Qr ; Qr :

Zr

< Co[T? ] Vau(z) P2 "da’ + (BT%)' / |u(z)|*Pz2mds),
. Qr Zr
1.e.

/;l u(:c)zz,z,'“dz' < 07[T2'+ (bTa)l—pIIt(T).,
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and therefore,

/ Zam(m) uz? "de’' < CsTI'(T) + ¢
Q

T =1
Thus
I(T) S c+ CoTI'(T).
Integrating this inequality we see that either I(T) < ¢, or I(T) > ¢+ C1oT*/%. Since the

latter is impossible if 2aCy < 1, we obtain that I(T) < ec.
3. Let us show that the last inequality implies that w is bounded in Q). Let M =

max;, - |u(z))|. Put

w(z) = max(0,u(z) - M).
Let us substitute in (2) the function ¢p(z) = 8(z,)z2 "w(z). where 6(z,) is a continuous
function, linear for T' < z,, < 2T and such that 6(z,) =1for 0 < z, < T. 6(z,) = 0 for
z, > 2T. Then |#'(z,)] < T7!. Since w(z’,0) = 0, we obtain that

& Ou dw il
/C;[Z a,;j(z,)—ézga + c(z)uw]z, "0(z, )dz

/b )u(z) P u(z)w(z)8(z,) 22" "dS

Ou A2 m6( n)]
< —qu(z)Zan,( )B%T

j=1
It is clear that

ﬁtiaw Ow Ow 3u() a_w()
0z;0z;  Ozi; 0z; Oz; 0 Ozy
u(z)w(z) > w(z)’,  |u(e)f” lu(:c)w(:ﬂ).z MP~lw(z)?.

Thus

/ Z%(w)a‘” 00 4 c(ayulB(en)oldz + f b() (=) [P 16(z.)z2 " dS

- Ow B[z~ "9(:1:,,)]
§—]‘;Tw(z)2au( )3::: Oz,

j=1

Cio 22— i 2 2-n 2o
< — f w’z, "dz / |Vw|*z,"dz
T Q27\Qr Q27\Q7 '
1/2 , _ ; 1/2
+ (/ wzﬂ(zﬂ):ci‘“d:c) (f |Vw|29(xﬂ)zi_"dz) ]
Qar Q27

C; AT? f |Vw|?z2"dz + CH[AOT2 / ]Vw|29(mn)xi'“dx
Q27\Qr Qa7

' 1/2 : 2 1/2
+T ( €(mn)mi'“w(z)3d3) ( f ' [V’w|26(a:n)a:f,‘“dm) ]
: Sar Q27r\Qr- :

< Cis [[ |Vw|2a:i_"da: < l(bT“)l"p/ mi‘“]w(m]P“dS] + C12A0l.
Q:7\Qr T . Syr\Sp _

Hices
f 2248 < CysT
Sar\St _
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f |Vw|3:ci_"d:c wy ), a:i""‘ti.}_(z}”ids wy (3,
Qar\Qr S27\S1

as T — oo, and if A is so small that Ci340 < 1/2, we have

[ Z a‘,(a:)a 2"'”‘d:c 4 ];T b(z)lwl(a:)]p*'lazf‘"“ds - ()

Qr £l

if T — oo. This means that w{z) = 0, i.e. u{z) < M. In the same way one can see that
w(z) > —M. Since

/ iVuizdm-i-/iul”“dz: < 00,
Q 5

the proof is complete after application of Lemma 4. [J

ExaMpPLE 3. The function u({zy,2z) = 2} + 3z;(1 — 23} is harmonic for z; > 0 and
satisfies the condition Ju/ON 4+ 6ul/® = 0 as z, = £1, so that (2) holds with p == 1/3.
Moreover, u(0,z3) = 0, w{z;,22) > 0 as z; > 0. It is obvious that u(z;, 2y} < 223 for
z; > 2.

7. The case of positive ¢(z}). We'll show that that the structiure of the domain Q is
inessential if the function c¢ is strictly positive.

THEOREM 5. Let
G c{z=(,2,) € R", || < Az, + B,0 < z,, < o0}

Suppose that u(z) is a weak solution.of(}.) in @ such that ugf\}« <0onS,cfz) 2 c>0.

There exists a positive coustant a such that if ju{z)] < e, then u(z) — 0 as £, — o©
auniformly in .

Proof. Let h{z,) be a smooth function such that h{z,) = lasl <z, < T, h{z,) = 0 for
zn > 3T/2 and for z,, <« 1/2. We can assume that ifz'(:cﬂ)[ <C/T and Ih”(m,,)l <cjre
as z, > 1. Set

T) = / [Z a,,(z + o(z)u?h(z, )22 " de

a,:'-1

+ f h(z,)b(z)ju(z) P22 ~"dS.
8
‘Substituting in (3) the function (2} = h(a:n)zz““u(z), we obtain that

J(T) _ w[ Z au 2”;‘:(:5“)) u(z )da:

s,;:r.:l

<€+ CITIY f (2| u(z)*dz)} 2.
: Qsrsz
Therefore, if [u(z)i < e**n then J(T) < Cee® T,
Set now

KT) = [ Z a,,(a: ‘.-}-i:(:c)u’]zi““dz.'% /s "B(z)iu(a:)?’“a:f,””d.ﬁ'.

Qr i,5=1
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If |u(z)| < be**n, then I(T) < J(T) < Cse*7T. Substituting in (3) the function
p(z) = u(:.-:) 3 "he(za), where h (:c,,) is a smooth function, equal to 1 as z,, < T — ¢ and
0forz,>T, "and passing to the limit as ¢ — 0, we obtain that

I(T)g(n—z)f Za,,, ol “dz-i—/ Zam

Qr ;=1 T i=1

/ﬁ Z am(:c

1 ;=1

2-—ndx: + ¢,

where

We have

(n —2)[ Zam u—ajia,l e < Cyf uzx,:"da:)l’fz(/ |Vu|?z2 " dz)"/?
Q Qr Qr

T 21

§5/ |Vu(z) |22 "dz +C5/e[ |Vu(z)|?zi "dz.
Qr Qr

Using the translation z, — X, + Tp, and choosing ¢ and T, we obtain that

i -
(n—2) QT;am U ay dz < I(T)/2.

On the other hand,
/ u(z)?zi"dz' < Csf'(T).
1r
Thus
I(T) < CTT'(T) + Ch.

Integrating this inequality we see that either I(T) < Cy,0or I (T) = C-; + CsT*/%. Since
the latter is impossible when 2aCs < 1, we obtain that I (T)< C7y1

/ |Vu|*dz +/ |ulP*'dz < oo.
Q s

Now our statement follows from Lemma 4. O

8. Existence of positive solutions.
THEOREM 5. Let

Q C{z=(z',z,) €R", |2| < Az, + B,0 < z, < o0} |

For any p > 0 there exists a function u(z), positive in Q, satisfying the equation Lu =0
and boundary condition

g;; + b(z)u(z)? = on S

‘and such that u(a: 0)=1.

Proof. Let ur be a solution to the equation Lu = 0 in Qr, satisfying boundary cond.ltlon
(2) and such that

'u.q-(:c', 0) = 1., uT(:c",T) = 0 (4)
Such a solution can be found by minimizing the functional

B'uz du(z — 2- ;1
/;[Z ( i)+() ]d$+m[qrb(z)#(m)+d5

T i,3=1
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in the class of positive functions u from C”(QT), satisfying condition (4). The minimizing
function ur is pomtwe 0 <ur(z) <1lin Q7.
Moreover,

1Y ) G5 + clapursde + [ bohur(aPellis =0 ()

3_11

for all functions ¢(z) € H*(Q), equal to 0 for z,, = 0 and for z, = T. The function ur(z)
is continuous in @7, see [1]. -

Set ur(z) =0in Q for z, >T.

Let K be a compact subset in @, and let Ty be such that K C Qr,. Let h(z,)
be a piece-wise function such that h(z,) = 1for 1 < z, < To — 1, h(z,) = z, for
O 2, 1 A(a,) = 0 for 2, > Tt

Substitute in (5) the function ¢(z) = h(z,)ur(z), where T > T,. We obtain

up Ou
1.1 = [ 13 @) 2T L (o)l ()i )

I

:31

& Ou
+£h(£n)b(x)uy(£)p+ld32 —/(;Z:aﬂj(z:]a—;h'(xﬂ)ur(z)dz

& 0nl[ BT ( f up(z)?dz)*/?
Qr,

L Ol T Ty 4 [ dz)'? < C(To)J(T, To)"'>.
QT{]
Therefore, J(T,Ty) < C1(Th).
Therefore, the set of bounded functions ur on K is weakly compact, i.e. there exists
a su’osequence of positive functions {ur,}, weakly converging in H*(K) N Ly4+1(S N K)
to a function u. Choosing a sequence of compact sets K., tending to @ and using
diagonalization, one can find a subsequence which will be denoted as {ur}, converging

everywhere in @ and in the space H, (Q) N Lp+110¢(S) to a function u from this space.
We have

[ TR+ e + [ Ha(aPola)ds = 0

1,3—1

for all functions p(z) € H'(Q), equal to 0 for z,, = 0-and for z, = T;. Passing to the
limit we obtain that

/ [Z o e 5, T el@)upldz + [3 b(z)u(z)Pp(z)dS = 0

1.,3-1

for all functions ¢(z) € H*(Q), equal to 0 for z,, = 0 and in a neighborhood of infinity,
i.e. u is a weak solution to the problem (1)-(2). Moreover, u > 0 in @ and u(z’,0) = 1,
so that u # 0.

The proof is complete. _ - a
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